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Thermodynamic study of the effect of a ternary addition on 
antiphase boundaries in FCC alloys 

F Guillet, Y Calvayrac and P C6nLdSse 
CECM-CNRS, 15 rue G Urbain, 94407 Viuy/Seine Cedex, France 

Received 5 Februq 1993, in final form 19 May 1993 

Abstract. Antiphase boundaries play an imponant role when considering the mechanisms 
involved in the plastic deformation of a facecenlred cubic alloy. We consider in this paper 
(1 00) antiphase boundaries in a binary LIZ ordered alloy to which a small amount of temary 
element is added. The scope of this work is to study the behaviour of the ternary element al 
the antiphase boundary (segregation, effect on the energy of the antiphase boundary) and to 
determine general simple mles that cm help to predict this behaviour. 

1. Introduction 

When a disordered alloy exhibits a first-order transition, two kinds of interfaces between 
two ordered or ordered/disordered domains may occur: antiphase boundaries (APB) and 
interphase boundaries (IPB). An APB occurs when the interface separates two domains of 
the same ordered phase, whereas an IPB occurs when the interface separates two domains of 
different phases (either orderedordered or ordereddisordered). An APB may result from the 
ordering process having started from two different sites of the crystal without the symmetry 
of the crystal being kept at the interface of the two domains created. Another cause for the 
creation of an APB is the existence or motion of dislocations whose Burgers' vector is not 
a translation vector of the superlattice. These dislocations appear upon plastic deformation 
of the material; the first dislocation creates an APB while the trailing dislocation restores the 
long-range order. Because this mechanism plays an important role when considering the 
mechanical properties of an ordered alloy, many studies (either theoretical or experimental) 
on APB have been carried out on this subject. 

We will consider in this study +[I 1 Ol(l00) APB occurring in an A3B L12 ordered alloy. 
Such an APB is called a non-conservative APB because of the existence of AABB tetrahedra 
at the interface, whereas conservative APB like a i[O 1 1](100) APB keep all the tetrahedra 
in a three A m e  B configuration (figure 1). Kikuchi and Cahn (1979) studied APB and IPB 
using a cluster variation method (CVM) in the tetrahedron approximation. They have shown 
the existence of a layer of disordered phase at the APB, the thickness of which increases 
with temperature. They called this phenomenon the wetting of the APB by a disordered 
phase. They also pointed out that at temperatures close to the transition temperature To the 
APB consisted in fact of two IPB: one IPB between one variant of the ordered phase and 
the disordered phase, and one IPB between the disordered phase and the other variant of 
the ordered phase. More recently, Finel et al (1990) showed that in the tetrahedron CVM 
approximation the wetting process consisted of what they called 'layering transitions'. As 
the temperature increases, one plane on each side of the APB gets disordered through a 
first-order transition. However, Finel (1992) pointed out that these transitions were due to 
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the tetrahedron approximation of the CVM and that they no longer appeared when using 
a tetrahedron-octahedron CVM. The properties of conservative (1 11) APB in LIZ ordered 
alloys have been studied by Sanchez et al (1987) using a tetrahedron CVM. They have shown 
that at thermal equilibrium (1 11) APB are also wetted by a disordered phase and studied 
non-relaxed APB created by shearing. A following study by Wu etol (1989) discussed the 
effect of microsegregation on (1 11) APB in ternary L1z ordered alloys. As a matter of 
fact, the addition of a ternary element to a reference binary alloy may have a considerable 
effect on the mechanical properties of this alloy, this effect being related (among other 
phenomena) to the behaviour of the element with respect to the APB (segregation, variation 
of the APB excess 6'ee energy). However, systematic studies of this problem are still scarce 
owing to the amount of work invoIved. Since the study of Mary et a1 (1991), we know 
that the CVM may allow us to define some pertinent simple parameters for the purpose of 
predicting the effect of the addition of small quantities of a ternary element to a binary L12 
ordered alloy. The purpose of this paper is to expand the previous study to APB. Its aim is 
to reduce the whole problem of the simulation of APB to simple general rules or statements 
allowing the prediction of the behaviour of the added element with respect to the APB, at least 
qualitatively. Owing to the amount of calculations involved in a tetrahedron-octahedron 
CVM when considering a ternary alloy, the APB were simulated using a tetrahedron CVM. 
However, the artifacts this approximation produces are only relevant to the wetting process 
and hence do not affect the validity of our results. 
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, \  F w r e  1. (a) The Lh ordered AIB bulk. White circles 
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Qitude z = 0.5. (b )  A non-conservative $ [ l  10](100) 
APB. This APB induces AABB tetrahedm at the interface. 
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2. Formalism 

The APB is simulated using the cluster variation method (CVM) in the tetrahedron 
approximation considering first-neighbour interactions. The chain of tetrahedra shown in 
figure 2 is sufficient to describe the whole APB. The chemical description of any atomic 
position can be obtained from this chain by applying a lattice translation vector parallel to 
the APB interface plane. The APB is thus characterized by the probabilities of configurations 
of the tetrahedra, as well as the probabilities of configurations of their subclusters. \?'e 
shall denote the tetrahedra configuration probabilities t.,;, i being the ith configuration of 
a tetrahedron (i.e. AAAA, AAAB, etc.) and n the position of the tetrahedron in the chain 
of tetrahedra. The probabilities of the subclusters are denoted as shown in figure 3: yn,i is 
the probability of the ith pair configuration on the right of the nth tetrahedron, x , , ~ , ~  is the 
probability of the ith pair configuration for the jth pair inside the nth tetrahedron ( j  ranging 
from 1 to 4) and U",; (IJ,,~) is the probability of the ith point configuration of the nth point 
belonging to the lower layer of the chain of tetrahedra (upper layer). These probabilities 
can also be denoted as vectors; for example, t, denotes the configuration probabilities of 
the nth tetrahedron. 

- d 

Vn Vnt l  

V layer 

Yn 
Xni  U layer 

Antiphase Boundary -R-z 
! 

o.o.o.o.oo~oOoOoOoOo - 
0 o O o O o O o O o ~ o . o  0 o . o  0 Un 4 Untl  

Tn ! 

F l y r e  2. The tetnhedra chain forming the antiphase boundary. Figure 3. Nolation for probabilities of each 
temahdron and its subdusters. 

Considering these probabilities, the free energy of the APB is given by the following 
relation: 

where E is the energy matrix taking into account effective pair interaction energies and 
chemical potentials, and L the operator that associates x ( l n ( x )  - I) to x .  

The CVM approximation consists then of minimizing (1) over the set of tetrahedra 
configuration probabilities. All subcluster configuration probabilities can be calculated from 
the tetrahedra configuration probabilities through a matrix relationship (for example, to 
calculate a pair configuration probability, one has to sum all the tetrahedra configuration 
probabilities for the tetrahedron configurations containing the considered pair configuration). 
Nonetheless, a problem arises from the choice of probabilities of tetrahedra configurations as 
the variable working set. Since two tetrahedra overlap by a pair, there exists a constraint on 
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the probabilities of next-neighbour tetrahedra configurations. This problem could be solved 
by introducing Lagrange multipliers, but this would reduce the efficiency of the minimization 
process as well as its accuracy. Considering the overlapping pair configuration probabilities, 
i t  is possible to define a set of unconstrained variables consisting of probabilities of tetrahedra 
configurations and of overlapping pair configurations yn. This set is made explicit in the 
appendix. The only constraint existing is due to the fact that long-range order far from 
the APB must meet the one observed in the bulk. For this reason, the first and last pair 
configuration probabilities y~ and yp+, (where p is the total number of tetrahedra along the 
chain) are set to values calculated from homogeneous CVM calculations carried out for the 
ordered phase. These probabilities are removed from the set of variables and kept constant 
during the minimization process, thus ensuring that the chemical profile of the APB meets 
the bulk at the end of the chain of tetrahedra. The minimization process of the free energy 
of the APB is carried out in the grand canonical ensemble with constant chemical potentials. 
The composition of the ternary ordered alloy is chosen when calculating the homogeneous 
CVM. this calculation giving out as a result the tetrahedra configuration probabilities for 
the bulk and the chemical potentials corresponding to the chosen composition. The energy 
mavix E is then calculated using these values of the chemical potentials, and after the 
minimization process (a Newton-Raphson algorithm) the chosen concentrations are equal 
to the concentrations found at both ends of the chain of tetrahedra. To ensure that no artifact 
comes out from this constraint, it has been checked for every calculation that the values 
found for the ordered bulk tetrahedron configuration probabilities did not vary for a few 
tetrahedra on each side of the chain, i.e. that the number of tetrahedra taken into account was 
sufficient for the APB chemical description to meet the bulk at both ends of the chain without 
forcing the system to do so. Typically, the length of the chain ranges from 40 tetrahedra to 
80, depending on the temperature. Nonetheless, since in the grand canonical ensemble the 
bulk is considered as an endless source of each element, the energy parameters considered 
have to be realistic. If not, a considerable amount of ternary element may segregate at 
the APB (and the calculations diverge) or, on the contrary, such a small amount of ternary 
element is present at the APB that the logarithm of probabilities diverges. The physical 
meaning of this consideration is that the transition temperature of the binary alloys AC and 
BC must be realistic and not differ from each other by more than approximately 1000 K. 
The excess free energy of the APB is then calculated as the difference of the free energy of 
the APB minus the free energy of a chain of tetrahedra of the same length in the ordered 
phase. As for this excess free energy, the absorption of an element is the sum of point 
occupancies for the whole chain of tetrahedra minus the sum of point occupancies for the 
same chain considered in the ordered bulk. The absorption is thus expressed in excess 
number of atoms per surface unit. 

3. Results 

The study carried out by Marty et al (1991) on the thermodynamics of dilute ternary FCC 
alloys involves a virial expansion of the CVM. Rewriting this formalism in the case of an 
APB is difficult, and as we shall demonstrate later, many properties of an APB depend only on 
homogeneous phase characteristics for which the virial expansion has been fully developed. 
Nonetheless, there is little difficulty in applying the basic principle of the virial expansion 
to the case of the APB. If we consider a very small amount of added ternary element C, then 
we can assume that only the probabilities of configurations involving at most one atom C 
are non-negligible. It is in fact necessary to proceed to such an expansion when considering 
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small concentrations since the probability for the CCCC tetrahedron configuration is so close 
to zero that the calculation diverges. It has then been pointed out by Marty eta[ (1991) that 
all the energies of the tetrahedron configurations involving one atom C could be rewritten in 
terms of symmetric and antisymmetric variables. Let us consider the three effective ordering 
pair interaction energies JAB. JAC and JBC defined from the pair interaction potentials from 
the following equation: 

JXY = ( V i ,  + V:y - 2 V i y ) / 4  (2) 

where V i  is a first-neighbour pair interaction potential. 

is added. Symmetric and antisymmetric pair energies can then be defined as follows: 
JAB is a constant parameter characterizing the binary A3B alloy to which the C element 

The energy dependence of the tetrahedron configurations including one atom C is 
summarized in table 1. The first column express the energy contribution from pair 
interactions of a configuration with respect to the effective ordering pair energies, the second 
column with respect to JAB, S and D. 

Table 1. Energy contributions of tetrahedron configurations including one ntom C. 

Configuration Energy contribution 

AAAC -WAC -3S12 - 3Dl2 
AABC -3S12 - D/2 - 2 J a  
ABBC -Jac -2J~c-2.1,~ -3SJ2i. D J 2 - Z J a  
BBBC - 3 h C  -3SJ2+3D/2 

-2J~c - JEC - 2 3 ~ ~  

Each of these configurations involves a term -3S/2 and, whatever the value of S, it 
cannot stabilize one configuration more than another one. Thus, when considering a small 
amount of added element, the behaviour of C will only depend on the antisymmetric variable 
D. From this conclusion, Marty et af  (1991) defined an energy parameter J controlling the 
behaviour of the added element, this parameter being the antisymmetric variable normalized 
by JAB: 

J = (JAC - JBC)/JAB. (4) 

From now on the symmetric variable S will be redefined as: 

S = (JAC + JBC)/JAB (5) 

for coherency purpose. 
For any further calculation, the effective ordering pair interaction energy of the reference 

binary alloy A3B will have the value JAB = 1.0. In the tetrahedron approximation, 
the ordering temperature is given by kTo = 1.94Jm. Except when noted explicitly, the 
temperature considered for the CalCuhtiOnS is kT =  JAB. 
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The ratio of the calculated values of the absorption of the added ternary element C (from 
now on denoted I+,) to C,t are plotted against J on figure 4 for two concentrations of C 
in the ordered bulk, The derivatives of re with respect to S and J have been analytically 
calculated for C, = 0.1%, and were found respectively to be of the order of 
thus proving what was previously asserted. The behaviour of C varies with respect to J ;  
when rc is positive (domain centred on I - 0) the ternary element segregates at the APB; 
on the contrary, when PE is negative the ternary element is rejected outside the APB in the 
ordered bulk. A maximum of the absorption is obtained for J - 0 for the stoichiometric 
A3B case. To study the change of behaviour of the C element when considering off- 
stoichiometric cases, re has been calculated for a binary alloy with an A element depletion. 
The absorption maximum is shifted to higher values of J (for a B element depletion it is 
shifted to lower values of J )  but the points where r, = 0 are obtained for approximately the 
same values of J .  To check if this phenomenon depends on the configuration expansion, the 
absorption rc has been calculated for C, = 3% by considering the whole set of tetrahedra 
configurations. The absorption profile does not essentially differ from the ones presented 
previously, and the points where rc = 0 are found at the same values of J .  

and 

o lYCc for Cc=3%, stoichiometry A3B 
0 TdCc for Cc=O.l%, binary composition: Ca=0.74; Cb=0.26 
e k/Cc for Cc=O.l%,stoichiometry A3B 

8 

6 

4 

2 

0 

-2 

-4 

-6 
-3 -2 -1  0 1 2 3 

J 

Figum 4. Absorption r, wlculatted as a function of J for several values of the C element 
concenmion in the ordered bulk The plot wlculnted at C, = 3% has been calculated over the 
whole set of tetrahedron configurations with S = I .  Spaced dots point out the domains where 
the calculations diverge. 

A chemical profile calculated at C, = 3% and J = 0.725 is shown on figure 5. The ApB 
takes place at the 21st tetrahedron. The point occupancies of the element C follow the LIZ 
symmetry, the nature of the occupancy of the two layers U and V swapping at the APB. A 
mean occupancy has been calculated for each tetrahedron in order to define a concentration 

t We have divided by C, so as to compare different plots on P more equal basis. The absorption is, however, 
expressed in terms of excess number of atoms per surface unit of the AQB and is not 5 concenmation. 
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Figure 5. Chemical profile calculated for C, = 35% and 3 = 0.725. The point occupancies 
of the element C have been plotted for the two layers U and V as a function of n (see 
figure 3). A mean occupancy C,(n) has been calculated for each teuahedron from the formula. 
Cdn) = ( u a , 3  + u n t l . 3  + Vn.3 + vnt1,3) /4 .  

profile at the APE. This result illustrates what happens at the APB although a concentraton 
profile would require a much larser APE in order to be able to define a local concentration. 

This result would tend to show that the knowledge of J is sufficient to determine at least 
qualitatively whether the added element will segregate at the APB or if it will be rejected in 
the ordered bulk. Nonetheless, it must be pointed out that J itself is not necessarily a good 
parameter for the purpose of predicting the behaviour of the added element at the APE: 

(i) The case considered for the full tetrahedra configuration probabilities involved 
antiferromagnetic interactions for AC and BC pairs (i.e. S > 0). In the case where both AC 
and BC pair interactions are ferromagnetic (i.e. S < 0), C will have a tendency to cluster 
and the probabilities of the configurations involving one atom C might be smaller than the 
probabilities of configurations involving more atoms C. This means that the configuration 
expansion canied out is not necessarily valid when considering ferromagnetic AC and BC 
pair interactions. 

(ii) J is a parameter calculated from effective pair interaction potentials in a ternary 
alloy, It is possible to determine these pair potentials from measurements of the 
atomic correlation functions using special experimental techniques (neutron diffraction on 
single crystals with different isotopic compositions or x-ray anomalous scattering using a 
synchrotron radiation source), but the data available are restricted to very few alloys, thus 
drastically restricting the general use of J for any ternary alloy. 
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However, the pertinence of J in the considered cases will allow us to draw more general 
conclusions from our study, these conclusions making it possible to predict the behaviour 
of the added element without the knowledge of any particular pair interaction data. 

Let us consider a hypothetical chemical profile across the APB as shown on figure 6. 
This profile implies that it is possible to define a concentration anywhere in the APE. For the 
moment, we wiU assume that the APB is wide enough for the definition of local concenlration 
to be meaningful. In the previous calculations (figure 5) the APE was too narrow for this 
to be the case, but it is anticipated that in the limit the two descriptions will converge. 
On both sides of the A m ,  the concentration of an element is equal to the concentration 
of this element in the ordered bulk. At the APE, it is equal to the concentration in the 
disordered phase (in figure 6, the concenlration in the disordered phase is higher than the 
concentration in the bulk). Between the two, a reorganization takes place, The number of 
planes occupied by the disordered phase will be denoted n. and the number of planes for 
which the reorganization occurs will be denoted 1. 

C dir. phase 

CLlZ 

" ACc 

Figure 6. Simplified chemical profile at the APE: n h the 
number of planes occupied by the disordered phase and I the 
number of planes for which the reorganization t&es place. 

Flgure 7. r. as a function of ACc. The curve 
consists of three line segments whose slopes are 
nearly equal. The linear regression shows thy 
theconstant term isequal to zero, i.e. r,(O) = 0. 

We assume that: 

(i) the disordered phase at the APB is the disordered phase whose energy is the closest 
to the one of the ordered phase-in that case, we will consider that the disordered phase is 
the FCC phase; 

(ii) there is no reorganization between the disordered phase at the APB and the bulk (i.e. 
the chemical profile is a tophat function). 

Then we can calculate Ta, r b  and r, from the concentrations of the two homogeneous 
phases L l z  and FCC: 

Ca(F'W - CnGlz) 

C c ( F W  - CcO.12) 
(:) = n ( c b ( F c c )  - CbGl,)) = (::) . (6) 

Since the considered temperature is below the transition temperature, the FCC phase is 
metastable. It is possible to calculate the characteristics of this homogeneous FCC metastable 
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phase for the same temperature and chemical potentials at which the APB has been calculated. 
This makes it possible to calculate the difference of concentrations appearing in (6) as a 
function of J. Since J yields r. and AC,, re as a function of AC, can be plotted by 
considering J as a curvilinear abscissa (figure 7). The curve consists of three line segments 
whose slopes are nearly equal, and as the temperature increases, the curve tends towards 
an exact line. A linear regression over the whole set of points shows that the relation 
r, = nAC, is satisfied apart from the fact that the coefficient is not an integer but a real 
coefficient taking into account the influence of reorganization. Hence, this real coefficient 
will be denoted k. The relation (6) has now to be verified for rb and r,. A plot of rb 
against ACb is shown on figure 8. If (6) was fully satisfied, the constant term of the linear 
regression should be zero. This constant term being non-zero is due to the reorganization 
neglected in expression (6), and we shall write the relation between rb and ACb as follows: 

r b  = kACb xb (7) 

where Xb is the constant term. 

l a -  y = -0.2247 + 5.5672~ R= 0.99766 
-0.275 - -k - - XXb) 

i 
Figure 8. r b  3s a function of ACb. The linear Figure 9. ko = r,/AC, and Xf as functions of 
regression shows tha the slope is the same 3s the Discontinuities we due to a layering 
coefficient k obtained in figure 6 and that the cooslml 
term 1s non-zero. 

temperamre. 
transition. 

Since we have r,+rb+r, = 0 and AC,+AC,+AC, = 0, necessarily X,+Xb+X, = 0 
and since X, = 0 we have then: 

x, = -Xb. (8) 

Moreover, if the amount of ternary element added to the reference binary alloy is small 
enough to consider that its influence on r, and r b  is negligible, then the values of the 
coefficients k and X, are imposed by the APB chemical profile in the binary reference alloy, 
and we can write: 

where ko, Xp and Xg are calculated considering an APB in the reference binary alloy, ko 
being a coefficient related to the number of planes occupied by the disordered phase and 
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X," a term related to the reorganization between the ordered phase and the disordered FCC 
phase. 

The two coefficients ko and X: have been plotted as functions of temperature on 
figure 9 for a stoichiometry A3B of the binary reference alloy with ko calculated from the 
relation k = r,/AC,. Calculations start at the spinodal ordering temperature for the binary 
A3B alloy, which is Ts = 1.4515 (below this temperature, considering a homogeneous 
disordered phase has no physical meaning). Both curves show a logarithmic shape. When 
the temperature increases, the number of planes occupied by the disordered plane increases 
and so does the coefficient ko. The reorganization length I also increases but remains finite, 
this being due to the first-order character of the transition. Since the reorganization length 1 
remains finite while the width of the APB diverges, its effect tends to be smaller and thus X," 
decreases when the temperature increases. The logarithmic divergence of these quantities 
when approaching the transition temperature is characteristic of the wetting process, as 
shown by Finel et a1 (1990). 

The most important information implied by (9) is the following: at the transition 
temperature, the difference (ACa, ACb, ACE) is the difference of concentrations between the 
ordered phase and the stable disordered FCC phase. Thus the difference (A& ACb, ACJ 
is the tie-line relating the ordered Llz  phase to the FCC phase on the A,B,C phase diagram. 
If the temperature at which the A m  is considered is not too distant from the transition 
temperature and since the coefficient ko is always positive, the behaviour of the added 
element can be directly known from reading the tie-line on the phase diagram. 

Another aspect of the effect of the ternary addition on an A m  is the stabilization of the 
APB, i.e. does the ternary addition decrease or increase the A m  excess free energy? The 
difference of excess free energies pG(t) - flG(b) (where pG(t) and BG@) are the excess 
free energies of the APB in the ternary and binary alloys) has been plotted in figure 10 
against J for two concentrations C, = 0.1% and C, = 3%. It can be noted that for values 
of J above 0.5 the APB is destabilized by the addition for C, = 0.1% (positive difference of 
excess free energies) whereas it is stabilized (negative difference of excess free energies) for 
C, = 3%. However, the added element segregates at the APB in both cases, as can be seen 
from figure 4. This leads to the conclusion that the behaviour of the added element cannot 
be directly related to the stabilization or destabilization of the APB. As a matter of fact, 
whereas the symmetric energy variable S has no influence on the behaviour of the added 
element, it  still modifies the energies of the tetrahedron configurations including at least one 
atom C. The probabilities of these configurations increases with the concentration C,. Thus 
the energy of the defect varies with the amount of added element whereas the behaviour 
does not. Nonetheless, if we consider that the APB is indeed an equilibrium between the 
ordered and disordered phases separated by two interphase boundaries, the variation of the 
excess free energy of the APB upon adding the ternary element can be approximated as 
foilows: 

BG(t) - BGfb) - kI[BGFcc(t) - BGLI,(OI - [BGFcc@) - BG~i,(b)ll (10) 

where k is the coefficient appearing in (7) and /IC, is the free energy per unit area of a 
[ I  001 plane of the phase x. 

The expression (10) is exact only if the chemical profile is a top-hat function. 
B W )  -BGW and kI[PGFcc(t) - B G ~ t ~ ( t ) l -  [WFCC@) - W L I ~ ( W I I  have been plotted 
against J in figure 11. The two curves are nearly identical apart from the small discrepancies 
due to the reorganization which has been neglected. Thus, the knowledge of the iiee 
energies of the homogeneous ordered and disordered phases of the binary and ternary alloys 
is sufficient to conclude whether the APB is stabilized or destabilized by the ternary addition. 
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Fme 10. Variation of the APB excess free energy fJC(t) = ,9C@)) against J for WO 
wncenlrations C, =0.1% and C, = 3%. 

4. Discussion 

So far, we have shown that the behaviour of the added element and the effect of the addition 
could be determined by considering an equilibrium between the ordered and disordered 
phases. This conclusion is all the more valid as the temperature is close enough to the 
transition temperature and the APE thus consists of two IPB. One question then arises: 
does the behaviour of the added element considerably vary at low temperatures, where the 
equilibrium between the two phases no longer exists (i.e. below the spinodal temperature 
T,)? This question is of some interest, for if & is low for the T-CVM, it rises to 1.8J~ 
for the m-cvM and more for further cluster expansions of the cw.  If indeed the domain 
where the equilibrium between the two phases can be considered is very small, then the 
scope of our study could be considerably restricted and valid only very near to TO. 

However, calculations show that the behaviour of the added element does not change 
below T,. If rc is close to zero, it may change sign with a decrease of the temperature, but 
this variation may happen above or below T, and is not due to the spinodal itself. When r, 
is well determined (i.e. its absolute value is well above zero), the behaviour of the added 
element does not change when crossing Ts. In fact, the tetrahedron of the APB is disordered 
because it lowers the energy of the defect and thus exists at much lower temperatures than 
Ts. There is no physical reason why the behaviour of the added element should change 
below T,. 

However, the location of C has an influence on the morphology of the APB. Below c, 
the chemical profile remains sharp. When the temperature comes close to TO, the width of 
the APB diverges. This phenomenon is all the more intense as T, is close to To. The fact 
that Ts comes nearer to TO when expanding the cluster approximations of the CVM means 
that the width of the APB will remain small until a few degrees below To where the width 



6198 F Guillet et al 

0.015 

0.01 

0.005 

0 

-0.005 

-0.01 

-0.01 5 
-5 -4 -3 -2 -1 0 1 2 3 

J 
Figure U. Variation of the *PE excess free energy BG(1) - BC@) and corresponding 
homogeneous ordered and disordered phases free energy variation k([pGKc(t)  - BG~l , ( t ) l  - 
[BCm@) - B G ~ i ~ @ ) l l  against J ,  

greatly increases. This phenomenon has been (among other studies) studied by Ricolleau 
etal (1992). 

Another interesting point is the comparison of this study with the one carried out by Wu 
etal (1989) on (1 1 1) APB. These authors show that for A3txB~-x alloys the segregation is 
governed by its substitutional behaviour. The excess element (i.e. A if x z 0, B if x < 0) 
will segregate at the APE for all temperatures so that the ordered phase tends towards the 
stoichiometric composition. If the added element C substitutes on A sites (B sites) it will 
segregate like A (B). If the final composition of the alloy is A3-iB1-yCx+y with x 0 
and y > 0, then the site preference of the ternary addition plays an important role on the 
segregation of the host elements. If C substitutes on A sites (B sites) the alloy has to be 
considered as an (A,C)3tyB~-y alloy (A3-x(B,C)l+x)r and A (B) segregates to the APB. A 
maximum of segregation of C at the APE is found for a random distribution of C on A and 
B sites. 

From our point of view, since the behaviour of the added element is governed by 
an equilibrium between the ordered and disordered phases, this behaviour should be 
identical when comparing (1 00) APB and (1 1 1) APB. Although Wu et al (1989) chose 
the substitutional behaviour of the ternary element as a parameter for their study, the effects 
of the ternary addition on ( I  11) APB described are identical to those presented in this 
paper. This demonstrates that the chemical properties of these APE are induced by the 
equilibrium between the stable ordered phase and the metastable disordered phase. There is 
no reason why this conclusion should not be extended to APE of any direction. Furthermore, 
this implies that the variations of the chemical and thermodynamic properties of APB upon 
addition are all dictated by this equilibrium and tend towards the same direction. The 
geometry of the APB can, howrever, have a 'second-order' influence on these quantities 
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(for example, every APB will be stabilized by the same addition, some APB can be more 
stabilized than others owing to their orientations). However, looking at the tie-lines of the 
phase diagram and carrying out simple simulations of the two homogeneous phases, we can 
predict the effect of the addition on the APB. 

5. Conclusion 

Considering a configuration expansion of the CVM, we have defined a pertinent parameter 
J in order to study the behaviour with respect to an APB of an element C added in small 
quantity to a Llz ordered AsB aUoy. The study of the APE has shown that the disordered 
phase appearing at the defect was indeed the disordered FCC phase. Moreover, it has been 
assessed that, at temperatures for which the disordering occurs for at least a few planes 
at the boundary, every characteristic of the APE (i.e. chemical and energy) was due to an 
equilibrium between the stable Llz ordered phase and the metastable disordered Fcc phase, 
the existence of which is made possible by the presence of the APB. As was stated by 
Kikuchi and Cahn (1979), the APB then truly consists of two IPB between the ordered phase 
and the metastable disordered phase. The variation of the APB chemical description and 
excess kke energy upon adding the ternary element is then directed by the variation of the 
concentration and free energy of these two phases. If the temperature at which the ApB is 
considered is not too low, then the behaviour of the added element (segregation at the APB 
or rejection in the bulk) can be known directly from the phase diagram. If there is more 
(less) ternary element in the disordered FCC phase at the transition temperature than in the 
ordered phase, then the added element will segregate at the APB (be rejected in the bulk). 

One can also know if the APB will be stabilized by the ternary addition by studying 
the variation of the free energies of the stable ordered phase and the metastable disordered 
FCC phase. These energy variations are not directly accessible, but in any case their signs 
may be qualitatively calculated from CVM carried out on homogeneous phases. This method 
is much simpler (although only qualitative) than a full simulation of the APB and allows 
calculations using more precise CVM (tetrahedron-octahedron, second-neighbour ordering 
pair energies). 

Appendix 

Working with tetrahedron probabilities as set of variables induces a technical problem owing 
to the fact that these variables are redundant. However, probabilities have the advantage 
of being the natural basis with which thermodynamics are calculated. With the set of 
probabilities that have been defined, two constraints occur: the sum of the probabilities 
of each tetrahedron must be equal to one, and two consecutive tetrahedra overlap along 
the y pair probabilities. Since the probabilities of each tetrahedron subcluster can be 
obtained through a matrix relationship from the tetrahedron probabilities, we shall denote 
PI the matrix associating the tetrahedron probabilities to the right y pair and Pz the matrix 
associating the tetrahedron probabilities to the left y pair. For each nth tetrahedron, the 
constraints defined are expressed as follows: 

1.t"  = 1 (AI)  

g"=P, . t , = P 2 . t n - l .  (-4% 
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In order to get rid of the constraint (AZ), we have to build a set of probabilities based 
on the pair probabilities y. and complete it with chosen tetrahedron probabilities t,. These 
pair probabilities yn are also redundant because of the normalization constraint: 

l . y , = l .  643) 
If np  is the dimension of yn, then a vector of np - 1 probabilities will be free of the 

normalization constraint. This vector will be denoted y;. The set of variables consisting 
of the pair probabilities may be completed by a subset of the tetrahedron probabilities of 
dimension nr - 2np + 1, n f  being the dimension of t,. Tetrahedron probabilities belonging 
to the subset are denoted e. The other probabilities will be denoted t; and we have thus: 

.=($) 
We have now to check that every tetrahedron and its subcluster probabilities can be 

calculated from the set of probabilities defined. The relation (A2) can be rewritten as 
follows: 

( A 3  y:, = P? .t: +P; .t; 
y;+l = P; . t; + P; . t,P, 

Furthermore, we have from (Al)  

1 =l . tH+l . t , ” .  (A71 
If the matrix R defined as: 

is regular then t: can be calculated from the set of relations (M), (A6) and (A7) from the 
chosen set of variables. Let us calculate the dimension of Pf: from the definition of P, this 
matrix has n p  - 1 rows and n f  - (nr - 2np+ 1) = 2np - 1 columns, and is thus an np - 1 
by 2np - 1 matrix. The dimension of P; is also np - 1 by 2np - 1, and thus the dimension 
of R is 2np - 1 by 2np - 1. The determinant of this square matrix being non-zero is in fact 
the criterion for choosing the tetrahedron probabilities to take into account when building 
the t; tetrahedron probabilities subset. The matrix R then admits an inverse matrix, which 
makes it  possible to calculate t,P from t: and y;. Probabilities of every subcluster can 
then be calculated from the complete tetrahedron probability. Using the set of variables 
(t:, y;) thus avoids introducing Lagrange multipliers, which would reduce the efficiency of 
the Newton-Raphson algorithm. 
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